High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles.

نویسندگان

  • Y Miyazaki
  • S Nomura
  • T Miyake
  • H Kagawa
  • C Kitada
  • H Taniguchi
  • Y Komiyama
  • Y Fujimura
  • Y Ikeda
  • S Fukuhara
چکیده

Previous studies have demonstrated that a high level of shear stress can produce platelet aggregation without the addition of any agonist. We investigated whether high shear stress could cause both platelet aggregation and shedding of microparticles from the platelet plasma membrane. A coneplate viscometer was used to apply shear stress and microparticle formation was measured by flow cytometry. It was found that microparticle formation increased as the duration of shear stress increased. Both microparticles and the remnant platelets showed the exposure of procoagulant activity on their surfaces. Investigation of the mechanisms involved in shear-dependent microparticle generation showed that binding of von Willebrand factor (vWF) to platelet glycoprotein lb, influx of extracellular calcium, and activation of platelet calpain were required to generate microparticles under high shear stress conditions. Activation of protein kinase C (PKC) promoted shear-dependent microparticle formation. Epinephrine did not influence microparticle formation, although it enhanced platelet aggregation by high shear stress. These findings suggest the possibility that local generation of microparticles in atherosclerotic arteries, the site that pathologically high shear stress could occur, may contribute to arterial thrombosis by providing and expanding a catalytic surface for the coagulation cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview on Platelet-derived Microparticles in Platelet Concentrates: blood collection, method preparation and storage

Preparations of platelet concentrates (PCs) that are stored under blood bank conditions and used for transfusion purposes, appear to be enriched in platelet derived-microparticles (PMPs) with high coagulant activity that may change platelet efficacy and safety issues. High shear stress could cause shedding of PMPs from the platelet plasma membrane, platelet aggregation, and activation of the co...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress

We describe here the mechanism of platelet adhesion to immobilized von Willebrand factor (VWF) and subsequent formation of platelet-derived microparticles mediated by glycoprotein Ib (GPIb ) under high shear stress. As visualized in whole blood perfused in a flow chamber, platelet attachment to VWF involved one or few membrane areas of 0.05 to 0.1 m2 that formed discrete adhesion points (DAPs) ...

متن کامل

Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress.

We describe here the mechanism of platelet adhesion to immobilized von Willebrand factor (VWF) and subsequent formation of platelet-derived microparticles mediated by glycoprotein Ibalpha (GPIbalpha) under high shear stress. As visualized in whole blood perfused in a flow chamber, platelet attachment to VWF involved one or few membrane areas of 0.05 to 0.1 microm(2) that formed discrete adhesio...

متن کامل

Low shear stress can initiate von Willebrand factor-dependent platelet aggregation in patients with type IIB and platelet-type von Willebrand disease.

Platelets exposed to shear stress aggregate in the absence of exogenously added agonists, utilizing distinct platelet membrane receptors and ligands depending upon the level of shear stress applied. Using a modified cone and plate type viscometer, we previously demonstrated that, under low shear stress (18 dyn/cm2), aggregation is mediated by platelet membrane glycoprotein (GP) IIb-IIIa and fib...

متن کامل

Studies of adhesion-dependent platelet activation: distinct roles for different participating receptors can be dissociated by proteolysis of collagen.

The molecular differences between native-type collagen type I fibrils (NC) and their pepsinated monomers (PC) were used to uncover receptors involved in platelet-collagen interaction along the adhesion-activation axis. The platelet-depositing capacity of NC and PC under blood flow and their adhesive properties and respective morphologies, aggregation, procoagulant capacity, and tyrosine phospho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 88 9  شماره 

صفحات  -

تاریخ انتشار 1996